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The preparation of chiral spirocyclic ethers via allylic etherification/olefin metathesis of homoallylic alco-
hols is investigated. This reaction sequence transforms the enantiopure substrate alcohols, synthesized
by a one-pot asymmetric rhodium-catalyzed conjugate addition/metal-mediated allylation procedure,
into the desired spiro ethers with full conversions and in excellent isolated yields. The synthetic sequence
provides an efficient means for a rapid construction of functionalized spiro ethers in a stereoselective
manner.

� 2009 Elsevier Ltd. All rights reserved.
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The frequent occurrence of the spiro framework in naturally
occurring and pharmaceutically active substances has made their
stereoselective preparation an important area of investigation in
organic synthesis.1 One of the commonly encountered members
of this family of compounds are spirocyclic ethers,2 exemplified
by natural products such as clementein (1),3 clerocidin (2),4 and
theaspirone (3)5 (Fig. 1).

As reported by us previously, the combination of enantioselec-
tive Rh-catalyzed conjugate addition of arylboronic acids to enon-
es, in the presence of the monodentate phosphoramidite ligand L,6

followed by Barbier-type indium-mediated allylation7 as the sec-
ond step in a one-pot sequence, in aqueous medium, afforded
1,3-disubstituted cyclic alcohols in excellent diastereoselectivities
and high yields (Scheme 1).8

In our earlier work, the potential for further derivatization of
the product alcohols was briefly explored by allylic etherifica-
tion/ring-closing metathesis (RCM) of a single compound to afford
the corresponding spiro ether in moderate yield.8

Here, we report optimized conditions for the conversion of dia-
stereomerically pure homoallylic alcohols, prepared via the one-
pot conjugate addition/allylation sequence (Scheme 1), into chiral
spirocyclic ethers via allylic etherification/RCM, quantitatively,
and in excellent isolated yields. The product spiro ethers can be
functionalized by, for example, dihydroxylation, as is also exempli-
fied in the present work.
ll rights reserved.
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Conversion of the homoallylic alcohols 1a–f into the spiro
ethers commenced by reaction with sodium hydride and allyl bro-
mide to afford the corresponding allyl ethers 2a–f (step 1, Table
1).9 As the deprotonation with sodium hydride and the subsequent
reaction with excess allyl bromide at room temperature provided
quantitative conversions, the allyl ethers 2a–f were used for the
next reaction step without further purification. Thus, on treating
degassed dichloromethane solutions of 2a–f with Grubbś second
generation ruthenium catalyst at room temperature, chiral spiro-
cyclic ethers 3a–f were obtained in excellent isolated yields (step
O
O

clerocidin (2) theaspirone (3)

Figure 1. Naturally occurring spirocyclic ethers.



Table 1
Synthesis of chiral spiro ethers 3a–f by allylation/RCM of 1a–fa

R1

HO NaH (5 equiv.)
allyl bromide (3.5 equiv)

DMF, r.t.
R1

O Grubbs´ 2nd gen.
cat. (5 mol%)

CH2Cl2, r.t.
R1

O

R4

R2 R3

R2
R3

R4

1a, R1 = CH2, R2 = R3 = R4 = R5 = R6 = H
1b, R1 = CH2, R2 = R3 = R5 = R6 = H, R4 = Me
1c, R1 = CH2, R2 = Me, R3 = R4 = R5 = R6 = H
1d, R1 = CH2, R2 = R3 = Me, R4 = R5 = R6 = H
1e, R1 = NCbz, R2 = R3 = R4 = R5 = R6 = H
1f, R1 = CH2, R2 = R3 = R4 = H, R5 = R6 = OMe

f-a3f-a2

R2

R4

R3

R5

R6

R5

R6R6

R5

Entry Substrateb Product Yieldc (%)

1

HO

1a, >98% ee
dr = 94:6 (a/b)

O

3a

90

2

HO

1b, >98% ee
dr = 95:5 (a/b)

O

3b

89

3

HO

1c, >98% ee
dr = 98:2 (a/b)

O

3c

89

4

HO

1d, >98% ee
dr = >99:<1 (a/b)

O

3d

95

5 N
Cbz

HO

1e, 99% ee
dr = 73:27 (a/b)

N
Cbz

O

3e

80

6

HO

1f, 96% ee
dr = >99:<1 (a/b)

OMe

OMe

O

3f

OMe

OMe

84

a Allylations were performed at rt on 0.10–0.20 mmol scale with 5 equiv of NaH and 3.5 equiv of allyl bromide, respectively. RCM was performed at rt with 5 mol % of
Grubbś second generation catalyst.

b ee Values were determined by chiral HPLC. dr Values were determined by GC or 1H NMR spectroscopy (a: axial OH group; b: equatorial OH group). Pure single
diastereoisomers were used for further derivatization by allylation/RCM.

c Isolated yields based on substrates 1a–f.
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2, Table 1).10,11 The stereochemistry of the substrate alcohols 1a–f
was, in our earlier work, ascertained by NMR and, in the case of 1a,
also by single-crystal X-ray analysis.8

To demonstrate an example of further derivatization of the dou-
ble bond in the chiral spirocyclic ether products 3a–f, we reacted
the spiro ether 3a with osmium tetroxide and N-methylmorpho-
line N-oxide (NMO) in an acetone, water, and t-butanol solvent
mixture (1:1:0.4) at 40 �C. The highly functionalized dihydroxyspi-
ro ether 4 was obtained in 82% isolated yield as a 1:1 mixture of
cis-dihydroxy diastereoisomers (Scheme 2).12,13 In 2008, Carroll
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and co-workers reported the dihydroxylation of a similar unsatu-
rated spiro ether using a Sharpless one-pot procedure which affor-
ded the corresponding diol product in 74% yield and 1:4 cis/trans
selectivity.14

To summarize, we have shown that enantiopure homoallylic
alcohols, obtained by one-pot conjugate addition/allylation, are
easily converted into chiral spirocyclic ethers in excellent isolated
yields via an allylation/RCM reaction sequence. Furthermore, we
have shown that the obtained spiro ethers may be further utilized
for the preparation of highly functionalized spiro building blocks,
resembling spiroglycosides,15 by subsequent cis-dihydroxylation.
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